
Enhancing the convergence efficiency of a self-propelled agent system via a weighted model

Jianxi Gao,* Zhuo Chen, and Yunze Cai
Department of Automation, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China

Xiaoming Xu
Department of Automation, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China;

Shanghai Academy of Systems Science, 516 Jungong Road, Shanghai 200093, People’s Republic of China;
and University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, People’s Republic of China

�Received 28 April 2009; revised manuscript received 13 March 2010; published 26 April 2010�

We investigate a weighted self-propelled agent system, wherein each agent’s direction is determined by its
spatial neighbors’ directions with exponential weights according to the neighbor numbers. In order to describe
the fact that some agents with more neighbors might have larger influence on its neighbors, we introduce a
scaling exponent of the neighbor number between 0 and �. When the exponent is equal to 1, the convergence
efficiency is enhanced in our simulation. Furthermore, as the exponent increases, i.e., the effect of weight
becomes stronger, the network of agents becomes easier to achieve direction consensus.
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I. INTRODUCTION

Biological swarms are ubiquitous in nature, such as herds
of quadrupeds, school of fish and flocking of birds, etc. From
biology to physics, there has been a long standing interest in
swarm research �1–4�. Reynolds created the first computer
simulation of flocking with three heuristic rules known as
cohesion, separation and alignment �5,6�, and named it as
Boid model. In 1995, Vicsek et al. performed research on the
condition of alignment, and provided a simplified version of
the Boid model �7�. In the Vicsek model, N self-propelled
agents are driven toward different directions with a constant
absolute velocity in a squared zone. At each time step, every
agent updates its direction according to the average direction
of agents’ motion in its neighborhood of radius R. The simu-
lation results �7� illustrate the fact when the density of the
system is high and the noise is small enough, all agents will
converge to the same direction on a macroscopic scale.

In recent years, as development of research in distributed
sensor network �8�, unmanned aerial vehicles �9�, underwater
vehicles �10� and attitude alignment for clusters of satellites,
etc., Vicsek model as a fundamental model of consensus has
triggered widespread interest. In order to obtain the theoret-
ical explanations, Vicsek model is given in terms of a family
of undirected graphs �11–18�. In the standard Vicsek model,
the influencing radius and absolute velocity are invariable
�7�. The influencing radius is randomly chosen according to a
power-law distribution, which can make the network hetero-
geneous and enhance the convergence efficiency �19�. The
agent updates its direction and speed adaptively according to
the degree of consensus among its neighbors �20� or accord-
ing to the local order parameter of consensus and the global
consensus �21�. All the above methods and strategies are
utilized to enhance the convergence efficiency.

At present, researches on complex networks demonstrate
that networks are inhomogeneous �22–28�, i.e., the degree of
some nodes is much larger than the others. These nodes af-
fect the structure and the dynamic process of network a lot.
For instance, in the world wide web, the probability of con-
nection increases with the degree for a new website; in the
financial network and the traffic network, that removing
some hub nodes may lead to a break down of the whole
network; in the animal swarming, very few individuals are
known to be able to influence the group �29�. In the Vicsek
model, although influencing radius is the same, the neighbor
number of each agent is different. Increasing the radius of
some agents can make the network heterogeneous and en-
hance the convergence efficiency �19�. However, the influ-
encing radius of each agent should be confined to a small
range because the perception capability is limited for animals
and cost as well as technology is restricted for actual multi-
agent systems �such as robot formation and moving sensor
network�.

In this paper, we propose a weighted self-propelled agent
system, where the weight of each agent is determined by its
number of neighbors. The direction of each agent is updated
by the weighted average directions of its neighbors, instead
of average directions. The aim of this work is to accelerate
convergence and its degree of the self-propelled agent sys-
tem. The simulation results demonstrate that the convergence
time and the degree of consensus of the weighted model are
significantly improved compared with the unweighted
model. Furthermore, convergence efficiency in the self-
propelled agent system is enhanced when the weight of the
neighbor number is increased.

II. VICSEK MODEL

In the Vicsek model, a group of N agents are moving in a
L�L square zone with the same and constant velocity but
toward different directions. At initial time, the agents are
randomly distributed, and their initial directions are also uni-
formly distributed in the interval �0,2��. At each time step,
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the direction of each agent is determined by the average di-
rections of all the agents within a circle centered at the given
agent, whose influencing radius is R. At time t, the position
of a specific agent is updated according to

xi�t + 1� = xi�t� + v0ei�i�t� �1�

And its direction is updated as

ei
��t + 1� = ei��i�t�

�
j��i�t+1�

ei�j�t�

� �
j��i�t+1�

ei�j�t��
2

, �2�

where ��i denotes the white noise, ei�i�t� denotes unit direc-
tional vector, and �i�t+1� is the set of neighbors for agent i
at time step t+1.

In order to measure the degree of consensus for all the
agents, an order parameter is introduced as �7,30�

V� =
1

N
��

i=1

N

ei�i�t��
2

, 0 	 V� 	 1. �3�

A larger value of V� indicates a better consensus, espe-
cially when V�=1, all the agents moving in the same direc-
tion. Numerical stimulation claims that, in the circumstances
of high density and low noise, all the agents will definitely
approach to the consensus state, namely, having the same
direction of velocity after definite time steps �convergence
time� �31�.

In this paper, two aspects of convergence efficiency are
defined as

Convergence time t. When the direction � of all the agents
in the system become constant or the sum of change is small
enough, the number of time steps have past is defined as
convergence time.

Degree of consensus V�. To evaluate the degree of direc-
tion consensus among agents, which is shown in Eq. �3�.

In order to measure the fluctuations of the order param-
eter, the Binder cumulant G �14,18,32,33� is defined as

G = 1 −
�V�

4�t

3�V�
2�t

2 , �4�

where � · �t indicates time average.

III. WEIGHTED MODEL

The degree is an essential variable in complex network as
the neighbor number in the self-propelled agent system. The
agent with more neighbors might have larger influences on
its neighbors, which should play a very important role in the
dynamic process. Thus, we introduce a weight related to the
degree of each agent into Vicsek model when the directions
are updated. Moreover, in order to diversify the difference
between the large degree agents and the small degree agents,
a general exponential weight model is proposed. The weight

 j

��� denotes an exponential form of the neighbor j of agent i
at step t, and the mathematic description of weight is defined
as


 j
����t� =

nk
��t�

�
k��j�t+1�

nk
��t�

, �5�

where nk�t� denotes the degree of agent k at time step t.
Introducing the weight to the direction updating equation

Eq. �2�, we will get the weighted model. In this model, each
agent influences its neighbors’ position according to the Eq.
�1� and directions according to the following equations at
time t,

ei�i�t+1� =

�
j��i�t+1�


 j
����t�ei�j�t�

� �
j��i�t+1�


 j
����t�ei�j�t��

2

, �6�

where � j��i�t+1�
 j
����t�=1, and 
 j

����0.
When �=0, the new model is the same as the standard

Vicsek model, where each agent in the system has the same
weight.

As � increases, the weight of the large degree agent be-
comes larger, and in the contrary, the weight of the small
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FIG. 1. �Color online� The degree of consensus V� as a function
of absolute velocity v0 with changing R in cells of various values
for �=0 or �=1. All the data points above are obtained by averag-
ing over 300 different realizations.
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FIG. 2. �Color online� The convergence time t as a function of
absolute velocity v0 with changing R in cells of various values �1.6
to 3� for �=0 and �=1. All estimates are the results of averaging
over 300 realizations.
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degree agent is smaller. Especially, when �=1, it denotes
that the weight of each agent is its degree.

When � increases, the difference of weight between the
large degree agent and the small degree agent enlarges, and
the effect of degree as weight is amplified. Furthermore,
When �→+�, an exponent infinity model is proposed as

ei�i�t+1� = lim
�→+�

�
j��i�t+1�


 j
����t�ei�j�t�

� �
j��i�t+1�


 j
����t�ei�j�t��

2

=

�
j�i�t+1,1�

ei�j�t�

� �
j�i�t+1,1�

ei�j�t��
2

,

�7�

where �t+1,1� denotes a set of agents which are the neigh-
bors of agent i and with the largest degree among the neigh-
bors of agent i.

The rule of updating direction in the exponent infinity
model is as follows: the direction of each agent is determined
by the average directions of agents who own the most neigh-
bors among the circle with influencing radius and centered at
the given agent at each time step illustrated in Eq. �7�.

IV. SIMULATIONS AND DISCUSSIONS

In order to compare the effect of the standard model with
the weighted model, we consider N agents moving in the
two-dimensional �2D� plane. In our system we have open
boundaries since we keep track only of the coordinates of
each agent �20,34� instead of periodic boundary conditions
�7�. The system consists of 200 agents positioned initially in
a square of size 10�10. Due to the limitation of influencing
radius R, each agent can only communicate with a certain
part of agents in the range of its radius and change its direc-
tion according to this local information. The absolute veloc-
ity v0 determines the changing frequency of neighboring
agents. Different influencing radius and absolute velocities
will give rise to diverse convergence time and degree of
consensus, which will be numerically investigated in this pa-
per.

Figure 1 shows the degree of consensus V� as a function
of the absolute velocity v0 with different R and �. For fixed
R and �, we can see that V� is a decreasing function of v0,
because for a large v0, each agent moves away from its
neighbors before direction consensus. However, it decreases
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FIG. 3. �Color online� �a� Plots of the convergence time t on the absolute velocity v0 for different � and R various between 1.7 and 2.1.
�b� Plots of the convergence time t on the velocity v0 for different � and R various between 2.5 and 2.9. All quantities are averaged over 300
realizations.
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slower for larger value of �, especially when R is large. It is
also illustrated that larger R is advantageous to direction con-
sensus in Fig. 1. Furthermore, for fixed R and v0, the degree
of consensus V� is larger when �=1 than when �=0. There-
fore, if the absolute velocity v0 is large enough, even though
it is very difficult or even practically impossible to achieve
direction consensus in the original Vicsek model which cor-
responds to �=0, the degree of consensus may still high in
weighted model, which implies large � is beneficial to de-
gree of consensus.

The convergence time t as a function of absolute velocity
v0 with changing R in cells of various values �1.6 to 3� for
�=0,1 is shown in Fig. 2. Quite remarkably, when R is
below a critical point �R	2.3 in Fig. 2� and � is set to be 0
or 1, t is a decreasing function of v0, but t would rise when R
is equal to 3 as increasing v0. In Fig. 1, it is known that the
faster each agent moves, the more likely the system is to
diffuse, and the larger the influencing radius R is, the more
likely the system obtains consensus. Considering the oppo-
site effects that R and v0 work on the consensus of system,
conclusions could be drawn from Fig. 2. When both of them
are large or small, every agent would adjust its direction
from time to time, so more convergence time is needed,

partly because the system switches topology continuously.
On the other hand, when R is small and v0 is large, the
system will quickly converge but diffuse, for both of the two
factors are positive to diffusion. On the contrary, when R is
large and v0 is small, the system will quickly converge and
reach consensus for both of the two factors could promote
the degree of consensus. Figure 2 also shows that when R
and v0 are fixed, the convergence time is less for a larger
value of �. The proof is in the Appendix.

Figure 2 indicates there exists a critical point of R affect-
ing the change direction of t. Thus, some further and detailed
results are done in Fig. 3. From the results of Figs. 2 and 3
we can conclude that for a fixed � when R	2.3 t is a de-
creasing function of v0 �see in Fig. 3�a�� and when R�2.4, t
is a increasing function of v0 �see in Fig. 3�b��. It is shown in
Fig. 3�a� that when � is kept constant, t decreases faster
when R is smaller. And Fig. 3�b� illustrates that for a fixed �,
t increases slower when R is smaller.

The convergence time t and degree of consensus V� as a
function of R is shown in Fig. 4. The convergence time t is a
decreasing function of R and V� is a increasing function of
R. In addition, for a smaller v0, t decreases faster in Fig. 4�a�.
It also implies that the weighted model shortens the conver-
gence time and enlarges the degree of consensus. Especially,
when the v0 is larger �v0=0.38�, the weighted model enlarges
the degree of consensus more than when v0 is smaller �v0
=0.1�.

The noise amplitude � not only affects the degree of con-
sensus but also the fluctuations of the order parameter G,
which will be numerically investigated in Figs. 5 and 6. The
Binder cumulant G as a function of the noise amplitude � is
shown in Fig. 5. When ��0.19, G of large system size �n
=4000� is larger than the small system size �n=200�, because
the density is larger for larger system size for fixed L in the
simulation. The Binder cumulant G has a down peak for N
=4000, which shows that there are large fluctuations of V�

when � is near �c. The simulation results demonstrate that
the curves of G for �=0 and 1 collapse, so the fluctuations of
V� is the same, thus it makes possible for us to study the
degree of consensus V� as a function of the noise amplitude
�, which is shown in Fig. 6. Clearly, when � ,R ,v0 are kept
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time averages have been computed over 1�104 time steps.
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constant V� is decreasing function of the noise amplitude �.
It implies that large � leads to a better direction consensus
for fixed v0 and � �see in Fig. 6�a�� or for fixed R and � �see
in Fig. 6�b��.

Finite size effects have been shown to play a very impor-
tant role in the Vicsek model, thus the convergence time t
and the degree of consensus V� as a function of the system
size N is shown in Fig. 7. when R is kept constant, we can
see that for any value of system size N, the weighted model
converges faster �see in Fig. 7�a�� and achieves a better di-
rection consensus �see in Fig. 7�b�� than the original Vicsek
model does. Figure 7�a� also demonstrates that the conver-
gence time t is a power function of N which can be described
as t	N�, where �=0.6454��0.0211� for the weighted
model and �=0.6353��0.0213� for the Vicsek model.

As is shown in Fig. 8�a�, convergence time t decreases as
the exponent � or influencing radius R increases. In terms of
a fixed exponent �, we can see that t is a decreasing function
of R, due to the fact that increasing R improves the connec-
tivity of the network. Moreover, for any given value of the
influencing radius R, t is a decreasing function of �, imply-
ing that if the effect of degree as weight becomes stronger, it
will be faster to obtain consensus. We also compute the de-

gree of consensus when the self-propelled agent system gets
to convergence. Figure 8�b� implies that the degree of con-
sensus is increasing when the effect of degree as weight be-
comes stronger or network has better connectivity.

V. CONCLUSION

The collective dynamics of intelligent multiagents is not
only a common phenomena in nature, but also a required
in-depth investigation in engineering. Improving the conver-
gence efficiency will bring in its extensive application. Re-
cently, some scholars investigated the effect of the weighted
coupling strength depending on the number of neighbors for
the purpose of improving the efficiency of network synchro-
nization on complex network �35�. However, utilizing the
topology structure of mobile network to enhance the conver-
gence efficiency is rarely reported. In this paper, we intro-
duce the weight based on the size of neighborhood into the
original Vicsek model. The simulation results show that this
approach can accelerate consensus process and improve con-
vergence efficiency. Furthermore, when the exponent is in-
creasing, the contribution of the weight is larger, the self-
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propelled agent system is much easier to obtain consensus
even for the noise disturbance.
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APPENDIX

Here we prove that the weighted model accelerates the
convergence of self-propelled agent system �36�. Our main
assumption is that the system, which can be described by
graphs and matrices, must be connected at every step. On the
one hand, the Laplacian matrix of Vicsek model is L=A−D,
where A is the adjacency matrix, D is a diagonal matrix and
each diagonal element di=� j=1

n aij. On the other hand the La-

placian matrix of the weighted model is L̂= Â− D̂, where Â

= 1
2 �AD�+D�A�, D̂ is a diagonal matrix and each diagonal

element d̂i=� j=1
n âij.

As is known, the second large eigenvalue of Laplacian
matrix is the algebraic connectivity which demonstrates the
convergence of the system �12�. Without loss of generality,
we suppose the eigenvalue of the Laplacian matrix of

weighted model contents �1�L̂���2�L̂�� . . . ��n�L̂� and the
eigenvalue of the Laplacian matrix of Vicsek model contents
�1�L���2�L�� . . . ��n�L�.

According to the peculiarity of Laplacian, it is known that

�1�L�=�1�L̂�=0.
The weighted model converges faster, if the Eq. �A1� con-

tents.

�2�L� � �2�L̂� . �A1�

The Laplacian of the original Vicsek model is

L = 

− d1 a12 . . . a1n

a21 − d2 . . . a2n

] ] � ]

an1 an2 . . . − dn

� , �A2�

and L= �lij�n�n, � j=1
n lij =�i=1

n lij =0.

The Laplacian of the weighted model is

L̂ = 

− d̂1

1

2
a12�d1

� + d2
�� . . .

1

2
a1n�d1

� + dn
��

1

2
a21�d2

� + d1
�� − d̂2 . . .

1

2
a2n�d2

� + dn
��

] ] � ]

1

2
an1�dn

� + d1
��

1

2
an2�dn

� + d2
�� . . . − d̂n

� ,

�A3�

and L̂= �l̂i j�n�n, � j=1
n l̂ij =�i=1

n l̂ij =0.

Let Eq. �A2� minus Eq. �A3� be M, then M =L− L̂, so

M = 

d̂1 − d1 −

1

2
a12�d1

� + d2
� − 1� . . . −

1

2
a1n�d1

� + dn
� − 1�

−
1

2
a21�d2

� + d1
� − 1� d̂2 − d2 . . . −

1

2
a2n�d2

� + dn
� − 1�

] ] � ]

−
1

2
an1�dn

� + d1
� − 1� −

1

2
an2�dn

� + d2
� − 1� . . . d̂n − dn

� = �mij�n�n. �A4�

Because the system is connected, di�1 for every agent,
suppose the set of nodes connected with the node i is
j1 , j2 , . . . , jp , . . . jk �di=k�1�. Then the ith diagonal element
of the M matrix is

mii =
1

2
�k1+� + �

p=1

k

djp
�  − k �A5�

where i=1,2 , . . . ,n.
So it is easy to get

dmii

d�
=

1

2
�k1+� ln k + �

p=1

k

djp
� ln djp . �A6�

There are two cases k=1 and k�2. When k=1, without
loss of generality, we suppose the node is connected with
node js. If djs

=1, the whole graph is not connected, so djs
�2, so dmii /d��0. When k�2, it is clearly that dmii /d�
�0. Thus mii is an increasing function of �. Moreover, when
�=0, mii=0. Thus we know that when ��0, mii�0 for any
i=1,2 , . . . ,n.

According to the Gersgorin disk theory, for any eigen-
value � of M,

�� − mii� 	 �
1	j	n, i�j

�mij� . �A7�
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Thus, we can get a conclusion that

�i�L� − �i�L̂� � 0. �A8�

So the weighted model converges faster than the original
Vicsek model. Furthermore, it is easy to know dmii /d� is an
increasing function of �, which demonstrates that mii enlarge
faster when � is larger. Then we know that enlarging � will
accelerate convergence.

�1� E. Bonabeau, L. Dagorn, and P. Fréon, Proc. Natl. Acad. Sci.
U.S.A. 96, 4472 �1999�.

�2� P. D. Lorch and D. T. Gwynne, Naturwiss. 87, 370 �2000�.
�3� E. Shaw, Am. Sci. 206, 128 �1962�.
�4� G. Flierl, D. Grünbaum, S. Levins, and D. Olson, J. Theor.

Biol. 196, 397 �1999�.
�5� E. Shaw, Nat. Hist. 84, 40 �1975�.
�6� C. Reynolds, Comput. Graph. 21, 25 �1987�.
�7� T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, and O. Shochet,

Phys. Rev. Lett. 75, 1226 �1995�.
�8� I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,

Comput. Netw. 38, 393 �2002�.
�9� D. M. Stipanović, G. Inalhan, R. Teo, and C. J. Tomlin, Auto-

matica 40, 1285 �2004�.
�10� D. J. Stilwell and B. E. Bishop, IEEE Control Syst. Mag. 20,

45 �2000�.
�11� A. Jadbabaie, J. Lin, and A. Stephen Morse, IEEE Trans. Au-

tom. Control 48, 988 �2003�.
�12� R. Olfati-Saber and R. M. Murray, IEEE Trans. Autom. Con-

trol 49, 1520 �2004�.
�13� Z. Lin, M. Broucke, and B. Francis, IEEE Trans. Autom. Con-

trol 49, 622 �2004�.
�14� G. Grégoire and H. Chate, Phys. Rev. Lett. 92, 025702 �2004�.
�15� C. Huepe and M. Aldana, Phys. Rev. Lett. 92, 168701 �2004�.
�16� W. Ren and R. W. Beard, IEEE Trans. Autom. Control 50, 655

�2005�.
�17� M. Aldana, V. Dossetti, C. Huepe, V. M. Kenkre, and H. Lar-

ralde, Phys. Rev. Lett. 98, 095702 �2007�.
�18� M. Nagy, I. Daruka, and T. Vicsek, Physica A 373, 445

�2007�.
�19� W. Yang, L. Cao, X. Wang, and X. Li, Phys. Rev. E 74,

037101 �2006�.

�20� W. Li and X. Wang, Phys. Rev. E 75, 021917 �2007�.
�21� J. Zhang, Y. Zhao, B. Tiana, L. Penga, H. Zhang, B. Wang, and

T. Zhou, Physica A 388, 1237 �2009�.
�22� P. Erdös and A. Rényi, Publ. Math. �Debrecen� 6, 290 �1959�.
�23� B. Bollobás, Random Graphs �Academic, London, 1985�.
�24� A.-L. Barabási and R. Albert, Science 286, 509 �1999�.
�25� D. S. Callaway, M. E. J. Newman, Steven H. Strogatz, and

Duncan J. Watts, Phys. Rev. Lett. 85, 5468 �2000�.
�26� R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev.

Lett. 86, 3682 �2001�.
�27� R. Cohen and S. Havlin, Phys. Rev. Lett. 90, 058701 �2003�;

Complex Networks: Structure, Stability and Function �Cam-
bridge University Press, Cambridge, England, 2009�.

�28� J. Shao, S. V. Buldyrev, L. A. Braunstein, S. Havlin, and H. E.
Stanley, Phys. Rev. E 80, 036105 �2009�.

�29� S. G. Reebs, Anim. Behav. 59, 403 �2000�.
�30� C. András, S. H. Eugene, and V. Tamás, Physica A 30, 1375

�1997�.
�31� W. Swaney, J. Kendal, H. Capon, C. Brown, and K. N. Laland,

Anim. Behav. 62, 591 �2001�.
�32� K. Binder and D. W. Herrmann, Monte Carlo Simulation in

Statistical Physics �Springer, New York, 1997�.
�33� H. Chaté, F. Ginelli, G. Gregoire, and F. Raynaud, Phys. Rev.

E 77, 046113 �2008�.
�34� Thus each agent can move to any �x ,y� coordinates in the 2D

plane without boundary restrictions.
�35� C. Zhou, A. E. Motter, and J. Kurths, Phys. Rev. Lett. 96,

034101 �2006�.
�36� In order to distinguish the exponent � used earlier from the

eigenvalue � we used in the appendix, we denote the exponent
to be �.

ENHANCING THE CONVERGENCE EFFICIENCY OF A… PHYSICAL REVIEW E 81, 041918 �2010�

041918-7

http://dx.doi.org/10.1073/pnas.96.8.4472
http://dx.doi.org/10.1073/pnas.96.8.4472
http://dx.doi.org/10.1007/s001140050743
http://dx.doi.org/10.1038/scientificamerican0662-128
http://dx.doi.org/10.1006/jtbi.1998.0842
http://dx.doi.org/10.1006/jtbi.1998.0842
http://dx.doi.org/10.1145/37402.37406
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1016/j.automatica.2004.02.017
http://dx.doi.org/10.1016/j.automatica.2004.02.017
http://dx.doi.org/10.1109/37.887448
http://dx.doi.org/10.1109/37.887448
http://dx.doi.org/10.1109/TAC.2003.812781
http://dx.doi.org/10.1109/TAC.2003.812781
http://dx.doi.org/10.1109/TAC.2004.834113
http://dx.doi.org/10.1109/TAC.2004.834113
http://dx.doi.org/10.1109/TAC.2004.825639
http://dx.doi.org/10.1109/TAC.2004.825639
http://dx.doi.org/10.1103/PhysRevLett.92.025702
http://dx.doi.org/10.1103/PhysRevLett.92.168701
http://dx.doi.org/10.1109/TAC.2005.846556
http://dx.doi.org/10.1109/TAC.2005.846556
http://dx.doi.org/10.1103/PhysRevLett.98.095702
http://dx.doi.org/10.1016/j.physa.2006.05.035
http://dx.doi.org/10.1016/j.physa.2006.05.035
http://dx.doi.org/10.1103/PhysRevE.74.037101
http://dx.doi.org/10.1103/PhysRevE.74.037101
http://dx.doi.org/10.1103/PhysRevE.75.021917
http://dx.doi.org/10.1016/j.physa.2008.11.043
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1103/PhysRevLett.85.5468
http://dx.doi.org/10.1103/PhysRevLett.86.3682
http://dx.doi.org/10.1103/PhysRevLett.86.3682
http://dx.doi.org/10.1103/PhysRevLett.90.058701
http://dx.doi.org/10.1103/PhysRevE.80.036105
http://dx.doi.org/10.1006/anbe.1999.1314
http://dx.doi.org/10.1006/anbe.2001.1788
http://dx.doi.org/10.1103/PhysRevE.77.046113
http://dx.doi.org/10.1103/PhysRevE.77.046113
http://dx.doi.org/10.1103/PhysRevLett.96.034101
http://dx.doi.org/10.1103/PhysRevLett.96.034101

